Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Work ; 77(4): 1319-1329, 2024.
Article in English | MEDLINE | ID: mdl-38457166

ABSTRACT

BACKGROUND: Militaries have historically utilised generic physical fitness tests to assess physical readiness, but there has been a recent shift to develop physical employment standards (PES) based on actual job demands. OBJECTIVE: The purpose of this investigation was to characterise the physical demands of critical tasks performed by Royal Australian Air Force (RAAF) personnel to inform PES development. METHODS: Job task analysis were performed for 27 RAAF trades. Criterion tasks were identified through a systematic approach involving workshops and field-observations. The identified tasks were assessed for dominant physical capacity and grouped into movement-based clusters. Psychophysiological measures were collected from personnel performing the tasks. RESULTS: Of 87 criterion tasks, 92% were characterised as manual handling dominant. Across these 87 tasks the principal physical capacities were: muscular strength (59%), muscular endurance (52%) and cardiorespiratory endurance (39%). The most common movement clusters were Lift to Platform (44%) and Lift and Carry (38%). Lift to Platform tasks required lifting to a median height of 1.32 m (1.20 -1.65 m) and a median mass of 25.0 kg (21.0 -28.9 kg) per person. Median carry mass was 25.0 kg (22.4 -36.1 kg) per person and distance was 26.0 m (17.5 -50.0 m). Median task mean 'Vdot;O2, HR and RPE were 1.8 L.min- 1 (1.5-2.2 L.min- 1), 137 b.min- 1 (120-144) and 13 (12-14). CONCLUSIONS: The high proportion of manual handling criterion tasks emphasises the importance of these activities and the underlying physical capacities for RAAF personnel. Current fitness assessments are unlikely to predict job task performance.


Subject(s)
Military Personnel , Physical Fitness , Humans , Australia , Physical Fitness/physiology , Muscle Strength/physiology , Employment , Task Performance and Analysis , Physical Endurance/physiology
2.
J Biomech ; 147: 111430, 2023 01.
Article in English | MEDLINE | ID: mdl-36640614

ABSTRACT

Experimental observations and theoretical models suggest that the loading of muscular aponeuroses is complex, causing strain patterns that are not reconcilable with the frequently assumed mechanical "in series" arrangement of aponeuroses with muscles and tendons. The purpose of this work was to measure the in-vivo longitudinal strains of the distal and proximal aponeuroses and force of the unipennate Medial Gastrocnemius (MG) muscle during locomotor activities. Sonomicrometry crystals and a force buckle transducer were implanted to measure aponeurosis strains and MG forces in the left hindlimb of four healthy female sheep while walking at different speeds and inclination angles on a motorized treadmill. The resulting aponeurosis strains versus the corresponding muscle forces resulted in a complex interaction that is not reconcilable with a mechanical "in series" arrangement of aponeuroses with either the free tendon or muscle, as has frequently been assumed when trying to determine the storage and release of mechanical energy in muscles or the stiffness and elastic modulus of in-vivo aponeurosis tissues. We conclude that the interaction of muscle tissue with aponeuroses in the sheep MG allows for elongation of the aponeuroses at low forces in the passive muscle, while elongation in the active muscle is greatly reduced possibly due to the complex shear forces and pressures produced when the muscle is activated. It is likely that the observed aponeurosis mechanics are similar in other unipennate skeletal muscles, but the current study was limited to a single muscle and therefore does not allow for such extrapolation at this time.


Subject(s)
Aponeurosis , Muscle, Skeletal , Female , Animals , Sheep , Aponeurosis/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Elastic Modulus , Models, Biological
3.
Eur J Sport Sci ; 22(1): 58-71, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34463198

ABSTRACT

Military personnel are required to complete physically demanding tasks when performing work and training, which may be quantified through the physical stress imposed (external load) or the resultant physiological strain (internal load). The aim of this narrative review is to provide an overview of the techniques used to monitor work and training load in military settings, summarise key findings, and discuss important practical, analytical, and conceptual considerations. Most investigations have focused upon measuring external and internal load in military training environments; however, limited data exist in operational settings. Accelerometry has been the primary tool used to estimate external load, with heart rate commonly used to quantify internal load. Supplemental to heart rate, psychophysiological and biochemical measures have also been investigated to elucidate aspects of internal load. Broadly, investigations have revealed that military training requires personnel to perform relatively large volumes of physical activity (e.g. averaging ∼15,000 steps·day-1) of typically low-moderate intensity activity (<6 MET), although considerable temporal and inter-individual variability is observed from these gross mean estimates. There are limitations associated with these measures and, at best, estimates of external and internal load can only be inferred. These limitations are particularly pertinent for military tasks such as load carriage and manual material handling, which often involve complex activities performed individually or in teams, in a range of operational environments, with multiple layers of protection, over a protracted duration. Comprehensively quantifying external and internal loads during these functional activities poses substantial practical and analytical challenges.


Subject(s)
Military Personnel , Accelerometry , Exercise , Heart Rate/physiology , Humans
4.
J Strength Cond Res ; 31(8): 2162-2168, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27787474

ABSTRACT

Hackett, DA, Cobley, SP, Davies, TB, Michael, SW, and Halaki, M. Accuracy in estimating repetitions to failure during resistance exercise. J Strength Cond Res 31(8): 2162-2168, 2017-The primary aim of this study was to assess the accuracy in estimation of repetitions to failure (ERF) during resistance exercise. Furthermore, this investigation examined whether the accuracy in ERF was affected by training status, sex, or exercise type. Eighty-one adults (men, n = 53 and women, n = 28) with broad range of resistance training experience participated in this study. Subjects performed up to 10 sets of 10 repetitions at 70% 1 repetition maximum (1RM) and 80% 1RM for the chest press and leg press, respectively. At the completion of each set, subjects reported their ERF and then continued repetitions to failure to determine actual repetitions to failure (ARF). The accuracy (amount of error) of ERF was determined over an ARF 0-10. Significant differences were found for error of ERF among ARF (p < 0.001), with the error of ERF ∼1 repetition at ARF 0-5 compared with >2 repetitions at ARF 7-10. Greater accuracy was found for the chest press compared with leg press, with the error of ERF ≤1 repetition for ARF 0-5 and ARF 0-3, respectively (p = 0.012). Men were found to be more accurate than women at specific ARFs for the leg press (p = 0.008), whereas no interaction was found for the chest press. Resistance training experience did not affect the accuracy in ERF. These results suggest that resistance trainers can accurately estimate repetitions to failure when close to failure and that ERF could importantly be practically used for prescription and monitoring of resistance exercise.


Subject(s)
Muscle, Skeletal/physiology , Perception , Resistance Training/methods , Weight Lifting/physiology , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...